Semilinear functional differential equations in Banach space
نویسندگان
چکیده
منابع مشابه
The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space
In this paper, the existence and uniqueness of the solution of a nonlinear fully fuzzy implicit integro-differential equation arising in the field of fluid mechanics is investigated. First, an equivalency lemma is presented by which the problem understudy is converted to the two different forms of integral equation depending on the kind of differentiability of the solution. Then...
متن کاملSemilinear Differential Equations with Nonlocal Conditions in Banach Spaces
In this paper we study the existence of mild solutions for the nonlocal Cauchy problem x′(t) = Ax(t) + f(t, x(t)), 0 < t ≤ b, x(0) = x0, by using the fixed point techniques, which extends and improves some existing results in this area.
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کاملMultiple Solutions for Impulsive Semilinear Functional and Neutral Functional Differential Equations in Hilbert Space
This paper is concerned with the existence of mild solutions of some classes of initial value problem for firstand second-order impulsive semilinear functional and neutral functional differential equations. Initially, we will consider initial value problems for firstorder impulsive semilinear functional differential equations y′(t)−Ay(t) = f (t, yt), a.e. t ∈ J := [0,b], t = tk, k = 1, . . . ,m...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1978
ISSN: 0022-0396
DOI: 10.1016/0022-0396(78)90037-2